

SOF INTERNATIONAL MATHEMATICS OLYMPIAD 2024-25

DO NOT OPEN THIS BOOKLET UNTIL ASKED TO DO SO

CLASS 11 SFT-B

Total Questions: 50 | Time: 1 hr.

Guidelines for the Candidate

- 1. You will get additional ten minutes to fill up information about yourself on the OMR Sheet, before the start of the exam.
- 2. Write your **Name**, **School Code**, **Class**, **Section**, **Roll No.** and **Mobile Number** clearly on the **OMR Sheet** and do not forget to sign it. We will share your marks / result and other information related to SOF exams on your mobile number.
- 3. The Question Paper comprises four sections :
 - Section 1: Logical Reasoning (15 Questions)
 - Section 2: Mathematical Reasoning (20 Questions) or Applied Mathematics (20 Questions)
 - Section 3: Everyday Mathematics (10 Questions)
 - Section 4: Achievers Section (5 Questions)
- 4. **Section-1, 3 and 4 are compulsory for all**. In Section-2 opt for Mathematical Reasoning OR Applied Mathematics and mark the same on the OMR Sheet.
 - Each question in Achievers Section carries 3 marks, whereas all other questions carry one mark each.
- 5. All questions are compulsory. There is no negative marking. Use of calculator is not permitted.
- 6. There is only ONE correct answer. Choose only ONE option for an answer.
- To mark your choice of answers by darkening the circles on the OMR Sheet, use HB Pencil or Blue / Black ball point pen only. E.g.
 Q. 16: Navya purchased a hand bag for ₹ 345.50, a pair of shoes for ₹ 480.25 and a cap for ₹ 75.50. How much money did she spend in all?
 - A. ₹901.25
- B. ₹785.50
- C. ₹895.75
- D. ₹920.25

As the correct answer is option A, you must darken the circle corresponding to option A on the OMR Sheet.

- 8. Rough work should be done in the blank space provided in the booklet.
- 9. Return the OMR Sheet to the invigilator at the end of the exam.
- 10. Please fill in your personal details in the space provided before attempting the paper.

Over 26 Years of Trust

96,499+ Schools **72** Countries

7.2+ Crores

Assessments

8 Olympiads

. Study the below given statements carefully.

J*K means J is smaller than K.

J#K means J is not greater than K. J©K means J is neither smaller nor equal to K. J@K means J is neither smaller nor greater than K.

J∲K means J is not smaller than K

is/are definitely true. have to decide which of the following conclusion(s) Assuming the following statements to be true, you

Conclusions : I. N*P

II. N@P

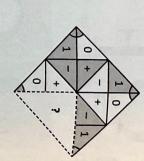
Only I

Β.

Only II

- 0 Neither I nor II
- Ō Either I or II
- 2 set. Select the set of numbers, that is similar to the given

(2171, 13, 143)


- > (4874, 17, 255)
- ₿. (6821, 19, 323)
- C (1321, 11, 99)
- D. (5860, 18, 280)
- 3 given conclusion logically follows from the given III. Read all the conclusions and find which of the followed by three conclusions numbered I, II and The given question consists of three statements statements, if all statements are to be true.

Statements:

- Ξ All balls are circles.
- \equiv Some circles are ovals.
- **=** No spheres are circles.

Conclusion:

- \equiv All balls are ovals.
- \equiv Some circles are balls.
- \equiv No balls are spheres.
- P Only II follows
- B. Only I and III follows
- Only II and III follows
- Only I follows
- 4. Which of the following figures will complete the pattern in the given figure?

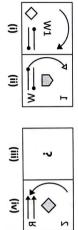
P

D

- 5 facing initially and how far is she now from her turns to her right and again walks 30 m. If she is starting point? now facing South, then in which direction was she turns and walks 30 m in each turns. Finally, she Anjali walks 30 m straight. She then turns right and again walks 30 m. She takes three consecutive left
- P West, 10√2 3
- Β. West, $30\sqrt{2}$ m
- ? North, 10√2 m
- East, 30√2 m
- 6. in the given figure? How many squares and triangles are formed respectively

- P 6 and 18
- 0 ₽. 6 and 17 6 and 20
- D 5 and 14

7. Two rows of numbers are given. The resultant number in each row is to be worked out separately based on the following rules and the question below the rows of numbers is to be answered. The operation on numbers progresses from left to right.


Rules:

- If an even number is followed by an odd number, then they are to be added.
- (ii) If an even number is followed by another even number, then the smaller number is to be subtracted from the larger number.
- (iii) If a composite odd number is followed by a prime number, then the composite odd number is to be divided by the prime number.
- (iv) If an odd number is followed by an even number, then they are to be multiplied.

j 70 9

If j is the resultant of the first row, then find the resultant of the second row.

- A. 25
- В. 57
- C. 22
- D. 51
- 8. There is a certain relationship between figures (i) and (ii). Establish a similar relationship between figures (iii) and (iv) by selecting a suitable figure from the options that would replace the (?) in Fig. (iii).

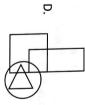
- P. R. D.
- B. R. R.
- .c.

Select the correct water image of the given combination of letters and symbols.

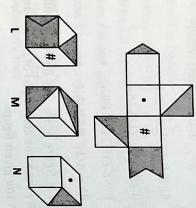
L@K\$H@DWE#P

- L@K\$H@DWE#P
- P#EWD@H\$K@L
- C. 「@K2H@DME#b
- L@K\$H@DWE#P ''
- Select a figure from the options which does not satisfy the same conditions of placement of the dots as in the given figure.





Ŗ


Β.

- 11. Seven persons J, K, L, M, N, O and P are sitting around a circle facing towards the centre of the circle. L is third to the left of N. Neither N nor L is immediate neighbour of O, who is third to the right of J. M is third to the left of K. What is the position of L with respect to P?
- Immediate left
- B. Second to the left
- C. Second to the right
- D. Immediate right

12. Select the box(es) that is/are similar to the box formed, when the given sheet is folded to form a

- Only L
- B Only N
- 0 Only M
- D Only L and N
- 13. following is an illustration of input and steps of A word and number arrangement machine when rearrangement. them following a particular rule in each step. The given an input line of words and numbers rearranges

Input: ocean 75 is 70 not green 88 84

Step I: 88 ocean 75 is 70 not green 84

Step II: 88 green ocean 75 is 70 not 84

Step III: 88 green 84 ocean 75 is 70 not

Step IV: 88 green 84 is ocean 75 70 not

Step V: 88 green 84 is 75 ocean 70 not

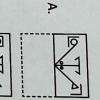
8

Step VI: 88 green 84 is 75 not ocean 70

Step VII is the last step for the above input. As Step VII: 88 green 84 is 75 not 70 ocean per the rule followed in above steps, answer the

rearrangement, if the input line of words and numbers Which of the following will be the last step of following question.

is 'it must 23 better 42 59 day 90'?


Step IV

- 8 Step V
- 0 Step VI
- O Step VII
- 14. both? arrangement each of which is either followed How many such numbers are there in the given by a symbol or preceded by a number, but not

169L6@173A#5\$B2*6F9DX5Z96M

- P One
- 8 Two
- 0 Three
- D More than three
- 15. the dotted line. appear when the transparent sheet is folded along from the options as to how the pattern would a dotted line on it is shown here. Select a figure A square transparent sheet with a pattern and

5

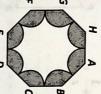
P

MATHEMATICAL REASONING

- 16. formed with the digits 0, 2, 2, 3, 3, 3, 4 is The number of numbers greater than one million
- P 120
- 240

8

- C 360
- 480
- 17. A man is employed to count ₹ 10710. He counts at the rate of ₹ 180 per minute for half an


- amount. Find the time taken by him to count the entire less every minute than the preceding minute. hour. After this he counts at the rate of ₹ 3
- ? 76 mins
- ₽. 89 mins
- 0 95 mins
- D 84 mins

- 18. $|z_3-z_1|^2$, is equal to then the maximum value of $|z_1 - z_2|^2 + |z_2 - z_3|^2 +$ If z_1 , z_2 and z_3 be unimodular complex numbers,
- P 6

Β.

9

- 0 12
- D
- 19. region. of side 9.8 cm and congruent sectors are formed In the given figure, ABCDEFGH is a regular octagon between the octagon. Find the area of the shaded

- 220.41 cm²
- B 230.15 cm²
- 226.38 cm²
- 245.72 cm²
- $y = \log(ax^3 + (a + b)x^2 + (b + c)x + c)$ is If $b^2 - 4ac = 0$, a > 0, then the domain of the function
- P $R-\left\{-\frac{b}{2a}\right\}$
- Β. $R - \left\{ \left\{ -\frac{b}{2a} \right\} \cup \left\{ x : x \ge -1 \right\} \right\}$
- $-\frac{b}{2a}\bigg\} \cup (-\infty, -1]\bigg\}$
- D. None of these
- 21. A container is in the form of a right circular cylinder satisfies which one of the following? is 32400 π cm³, then the height h of the container 15 cm as the cylinder. If the volume of the container surmounted by a hemisphere of the same radius
- 135 cm < h < 150 cm
- ₽. 140 cm < h < 147 cm
- 145 cm < h < 148 cm
- D. 139 cm < h < 145 cm
- 22. If $A+B+C+D=2\pi$, then $\cos A+\cos B+\cos C+$ cos D =
- $4\sin\frac{A+B}{\sin\frac{B+C}{\cos\frac{C+A}{\cos\frac{A+B}{\cos\frac{$
- $4\cos\frac{A+B}{\cos\frac{B+C}{\cos\frac{C+A}{\cos\frac{$ 2

C $\frac{1-4\sin\frac{A+B}{2}\sin\frac{B+C}{2}\sin\frac{C+A}{2}}{1-4\sin\frac{A+B}{2}\sin\frac{B+C}{2}\sin\frac{A+B}{2}\sin\frac{A$ 2

D.
$$-1-4\cos\frac{A+B}{2}\cos\frac{B+C}{2}\cos\frac{C+A}{2}$$

- 23. $f(x)=x^2$ If α , β are the zeroes of the polynomial then c =-p(x+1)-c such that $(\alpha+1)(\beta+1)=0$,
- P
- œ 0
- D.
- 24. $\lim_{x\to\infty} \frac{(1-\cos 2x)(3+\cos x)}{x\tan 4x}$ is equal to

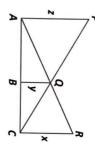
- 25. CD = 25 cm and BP = 27 cm, then find the value of r. DA at P, Q, R and S respectively. If BC = 38 cm, circle C(O, r) touches the sides AB, BC, ABCD is a quadrilateral such that $\angle D = 90^{\circ}$. A CD and
- A. 10 cm
- .Β 8 cm
- 12 cm
- 14 cm
- 26. from mean equals to frequency 1 and n is even, then the mean deviation If the values observed are 1, 2, 3,, n each with
- A. n
- Β. n/2
- C. n/4
- None of these
- 27. and x= Find the equation of the ellipse with foci at (±5, 0) as one of the directrices
- $\frac{x^{2}}{11} + \frac{y^{2}}{36} = 1$
- ? 14
- O

- 28. that the numbers so selected can be the measures Number 1, 2, 3, ..., 100 are written down on each (in cm) of three sides of a right-angled triangle is at random from each of the cards. The probability of the cards A, B and C. One number is selected
- Þ 100³
- Θ 503 ω
- 9 1003 <u>ω</u>
- None of these
- 29. point T. SQ, such that ST = 1 unit. Find the coordinates of the vertex Q on the side PR of $\triangle PQR$. T is a point on In the figure given below, QS is median drawn from
- P
- œ
- 0
- D
 - P(3, -1)
- 30.
- В 40
- $40\sqrt{3}$
- 31. have taken 6 hours more than the scheduled time And, if the train were slower by 6 km/h, it would have taken 4 hours less than the scheduled time. If the train would have been 6 km/h faster, it would A train covered a certain distance at a uniform speed
- 840 km

- The value of the expansion $(\sqrt{3}+1)^5+(\sqrt{3}-1)^5$ equals
- 88√3
- 88
- Find the length of the journey.

- 720 km
- 0 630 km
- D 950 km
- 32. Number of G.P's having 5, 9 and 11 as its three terms is equal to
- Exactly two
- Β. At most two
- At least one

None of these


33. In the given figure, PA, QB and RC are perpendicular

to AC. Then
$$\frac{1}{x} + \frac{1}{z} =$$

- 1/5y
- В 1/2y
- 1/y

D.

None of these

- 34. Solution of $\left|\frac{1}{x}-2\right| < 4$ is
- В
- 0
- Ō $-\infty, -\frac{1}{2}$ $\cup \left(\frac{1}{6}, \infty\right)$
- 35. L2 intersect at R. Locus of R, as L varies, is to 2x - y = 5 and 3x + y = 5 respectively. Lines L_1 and P and Q two straight lines L_1 and L_2 are drawn, parallel x + y = 1 and x + y = 3 at P and Q respectively. Through A straight line L through the origin meets the lines
- P x + 3y - 5 = 0
- Β. 2x - 3y + 7 = 0
- Ç x - 3y + 5 = 0
- D None of these

유 R

APPLIED MATHEMATICS

- 16. Find coefficient of correlation between x and y, wher
- $\sum x = 225, \sum y = 250, \sum (x \overline{x})^2 = 116, \sum (y \overline{y})^2 = 118,$
- $\sum (x-x)(y-y)=112$ and n=15

- 0.85
- В 0.87
- 0 0.96
- D 0.82

- 17. increased by 30 minutes. Find the duration of flight was reduced by 200 km/hr and the time of flight due to bad weather. Its average speed for the trip In a flight of 600 km, an aircraft was slowed down
- 3 hours
- В 1 hour

Ċ

2 hours

- Ō 6 hours
- 18. the obtain result in decimal system. Add binary numbers 101001 and 110011 and find
- Ņ 87
- В 92
- S 91
- Ō 88
- 19. Let f(x) = $\sqrt{|x|-x}$ and g(x) = - $\sqrt{x-|x|}$, then
- P Domain of f and g is ϕ .
- Β. Domain of f is R and domain of g is ϕ .
- C Domain of f is $(-\infty, 0)$ and domain of g is ϕ .
- Domain of f is R and domain of g is $(-\infty, 0)$.
- 20. vertices of a right angled triangle where $\angle R = 90^{\circ}$. The points P(12, 8), Q(-2, a) and R(6, 0) are the The value of a is
- 5
- φ.
- C 6
- Ō
- 21. in which letters A, E, O occur only in odd positions, Consider all possible permutations of the letters of the word ENDEANOEL. The number of permutations
- P 2 × 5!
- В <u>5</u>
- 7 × 5!
- 21 × 5!
- 22. rate of interest is 16% p.a. and the interest is added Find the effective rate of interest if the nominal
- Ą 16.54%

quarterly.

- В 16.99%
- C 17.05% 17.25%
- 23. It is given that there is no solution to the system the following is true? of equations x + 2y = 3, ax + by = 4. Which one of

- Þ a has a unique value.
- В b has a unique value.
- C a can have more than one value.
- D a has exactly two different values.
- 24. then AY =AB at X and AC at Y. If AB = 4BX and YC = 2 cm, XY is drawn parallel to the base BC of a $\triangle ABC$ cutting
- P 2 cm
- В. 4 cm
- C 6 cm
- D 8 cm
- 25. given below. one month. Calculate his monthly bill. Tariff plan is connection. He consumed 727 units of electricity in Mr Rituraj from Mumbai has 5 kW electricity

Fixed charge is ₹ 15 per kW per month

Surcharge – 0.2 per unit, Energy tax – 5% of tariff rates

Electricity charge

Units (in kWh) Price per unit (in ₹)
ts Nh) per
0-100 5.5
101- 200
201- 300 6.5
301- 600
601- 900
> 900

- P ₹ 5280
- В ₹ 5351.25
- C ₹ 5382.55
- Ō ₹ 5385.95
- 26. If the 2nd, 5th and 9th terms of a non-constant A.P. are in G.P., then the common ratio of this G.P. is
- ₽
- Β.
- 0 410
- O 5/8
- 27. above the marked price. If the sales are intra-state The printed price of an article is ₹ 70000. The and the rate of GST is 18%, find the amount of tax The shopkeeper sells the article to a consumer at 4% wholesaler allows a discount of 10% to a shopkeeper. (under GST) paid by the shopkeeper to the Central Government.
- Þ ₹ 1764
- Β. ₹ 882
- C 6552
- D ₹ 13104

28. Evaluate: $\frac{1}{4} \left(\cot^4 30^\circ - \csc^4 60^\circ \right)$

 $+\frac{3}{2}(\sec^2 45^\circ - \tan^2 30^\circ) - 5\cos^2 60^\circ$

8 6 11

4 7

0

O 18

29. The test marks of 20 students out of 10 are given below:

Number. of students	Test marks
1	1
1 3	2
1	w
2	
2 2	4 5
w	9
U	7
2	00
1	8 9 10
0	10

Find the percentile rank of test marks 6

P 50.25

8 52.50

0 55.25

51.25

30. measure the angles of elevation of the top of the Two men standing on opposite sides of a flagstaff is 20 m, then the distance between the men is flagstaff as 30° and 60°. If the height of the flagstaff (Use $\sqrt{3} = 1.732$)

P 46.19 m

₽. 40 m

5 26.14 m

None of these

- 31.
- A crime is committed by one of two suspects, A scene, it is found that the guilty party had a blood that A is the guilty party is type of suspect \boldsymbol{B} is unknown, then the probability A does match this blood type, whereas the blood type found in 20% of the population. If the suspect both of them. In further investigation at the crime and B. Initially, there is equal evidence against

- Β. 5/6
- 0 1/3
- o. 2/3
- 32. The reciprocal of the value of

$$\lim_{n\to\infty} \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{4^2}\right) ... \left(1 - \frac{1}{n^2}\right) is_{-}$$

Β.

0

O

33. outside at the rate of ₹ 10 per sq. m? 50 m, then what will be the cost of painting the tank diameter of the cylinder be 14 m and its length be a hemisphere adjoined on one side. If the external A storage tank consists of a circular cylinder with

> ₹ 16820

Β. ₹ 26180

₹ 25080

None of these

34. If mode of the following data is 65 and frequencies of p is 6, 8, p and 12 are in ascending order, then the value

00	0-20 20-40 40-60 60-80 80-100 100-120

D

₽

8 7

0 9

35. A man borrowed some money to repay in three equal annual installments of ₹ 9,261 each at 5% p.a. had he borrowed. compound interest. Find out what sum of money

₽ ₹ 24225

B ₹ 25325

0 ₹ 25220

D.

₹ 22220

P

3/5

EVERYDAY MATHEMATICS

36. seats. In how many ways can they be seated so that Five boys and three girls are sitting in a row of eight not all girls sit side by side?

P 36000

8 45000

32000

5 24000

> 37. A person invests money in three different schemes for 4 years, 6 years and 12 years at 6%, 8% and 5% ratio of his investment. each scheme, he gets the equal profits. Find the respectively. At the completion of the duration of

P 5:10:4

4:5:10

5:4:10

42.

- Ö 10:5:4
- 38. if its original cost was ₹ 18. the ratio 4: 9. Find the present cost of the article the raw materials used. The cost of raw materials materials and wages) was 3 times the value of The cost of an article (which is composed of raw increased in the ratio 3:7 and wages increased in
- P ₹ 41
- œ ₹ 30
- ? ₹ 40
- Ö None of these
- 39. loan? A man repays a loan of ₹ 3250 by paying ₹ 20 in the every month. How long will it take him to clear the first month and then increases the payment by ₹ 15
- P 20 months
- B 25 months
- 19 months
- D 15 months
- 6. the examination is 0.10. The probability that both will the examination is 0.05 and that Ashima will qualify examination. The probability that Anil will qualify Two students Anil and Ashima appeared in an that only one of them will qualify the examination. qualify the examination is 0.02. Find the probability
- P 0.11
- Β. 0.10
- 0.12
- 0.13
- 41.
- Β.
- 50
- 35
- C 45
- D
- days. In how many days will 10 women complete it? while 3 men and 7 women can complete it in 10 4 men and 6 women can complete a work in 8 days,
- 40

- A college has raised 75% of the amount it needs for the remaining people to be solicited? college will ask for donations. If the college is to already solicited represent 60% of the people the ₹ 600 from the people already solicited. The people a new building by receiving an average donation of building, what should be the average donation from raise exactly 25% of the amount needed for the new
- P ₹ 300
- Β. ₹ 250
- 0 ₹ 400
- O

₹ 500

- 43. ₹ 64 less. Find how much more amount he has to and guavas purchased, then he would have paid If he would have exchanged the number of apples Ganesh has to pay ₹ 482 for 19 apples and 11 guavas. pay to purchase 1 apple than 1 guava?
- P ₹ 19
- Β. ₹ 8
- ₹ 11
- ₹7
- 44. travel towards each other at a speed of 50 km/hr Two trains start from P and Q respectively and second train. The distance between P and Q is the first train has travelled 100 km more than the and 40 km/hr respectively. By the time they meet,
- œ 630 km
- 5 900 km
- None of these
- 45. A manufacturer has 200 litres of acid solution which content in the resulting mixture will be more than with 30% acid content may be added so that acid has 15% acid content. How many litres of acid solution 20% but less than 25%?
- More than 100 litres but less than 300 litres.
- Β. More than 120 litres but less than 400 litres.
- More than 100 litres but less than 400 litres.
- Ō. More than 150 litres but less than 600 litres

ACHIEVERS SECTION

- 46. Read the given statements carefully and select the correct option.
- In an alphabetical order as in an English dictionary. permuted and all the permutations are arranged Statement-I: The letters of the word COCHIN are COCHIN is 96. The number of words that appear before the word
 - different rings can be worn in four fingers with atleast one ring in each finger is 120. Statement-II: The number of ways in which five
 - > Both Statement-I and statement-II are true
 - ... Both Statement-I and Statement-II are false.
 - ? Statement-I is true but Statement-II is false
- D Statement-I is false but Statement-II is true

47. Evaluate:

(i)
$$\lim_{x \to 1} \frac{x^{1/4} - x^{1/5}}{x^3 - 1} =$$
 (ii) $\lim_{x \to 2} \frac{2^x + 2^{3-x} - 6}{\sqrt{2^{-x} - 2^{1-x}}}$

P

0

В

$$\frac{1}{30}$$
 1

O

- 48. Read the statements carefully and state T for true and F for false.
- \equiv The sum of infinite terms of a G.P. is 20 and the sum of their squares is 100. Then the common ratio of G.P. is
- \equiv If x, y and z are p^{th} , q^{th} and r^{th} terms respectively of an A.P. and also of a G.P., then $x^{y-z}y^{z-x}z^{x-y}$ is equal to -1.
- $\widehat{\equiv}$ If 2, 7, 9 and 5 are subtracted respectively four numbers is -24. numbers are in A.P., then the smallest of the from four numbers forming a G.P., the resulting

- 49. Which of the following statements is correct?
- Þ the vertex R is 3x - 4y + 8 = 0. R(4, 5), then the equation of the median through If the vertices of a ΔPQR are P(2, 1), Q(-2, 3) and
- 8 line 4x - y = 5, then the equation of line PQ is = 13 and the point Q(b, a) lies on the straight The point P(a, b) lies on the straight line 3x + 2y
- 9 has the equation $\frac{x}{c} + \frac{y}{3} = 1$, then the distance the point (13, 32). The line K is parallel to L and The line L given by $\frac{x}{5} + \frac{y}{b} = 1$ passes through 17

between L and K, is $\sqrt{23}$

- D None of these
- 50. Fill in the blanks and select the correct option.
- \equiv Let R be a relation from the set $\{1, 2, 3, \dots, 60\}$ of elements in R is $p, q \ge 3$ are prime numbers}. Then, the number to itself such that $R = \{(a, b) : b = pq, \text{ where}$
- \equiv Let $f(x) = ax^2 + bx + c$ be such that f(1) = 3, = 14, then λ is equal to $f(-2) = \lambda$ and f(3) = 4. If f(0) + f(1) + f(-2) + f(3)

D.	C	₿.	.> ,
600	660	540	(i)
$\frac{23}{2}$	1 <u>3</u>	-4	4 (ii)

SPACE FOR ROUGH WORK